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Abstract-In this paper, we make use of a procedure for estimating the effective properties of
nonlinear composite materials, proposed recently by Ponte Castaneda (1991, J. Mech. Phys. Solids
39,45-71), to study the effective constitutive behavior of ductile, fiber-reinforced composites. Both
estimates and rigorous bounds are obtained for the effective energy functions of multiple-phase,
fiber composites with general ductile behaviors (in the context of deformation theory of plasticity)
for the isotropic constituent phases. The resulting expressions for the energy functions may be
differentiated in a straightforward manner to obtain corresponding estimates for the anisotropic
effective stress-strain relations. Explicit calculations are carried out for the case of an aluminum
matrix composite reinforced with boron fibers. The results reveal some interesting features dis
tinguishing the constitutive behavior of ductile-matrix, fiber-reinforced composites from that of
linear-elastic, fiber-reinforced composites. One such feature is the strong coupling between the
dilatational and distortional modes for the ductile fiber composites. Finally, comparisons are made
with available experimental data.

1. INTRODUCTION

Fiber-reinforced composites are commonly used materials, and their mechanical properties
have been the subject of extensive investigations. However, most of the work to date has
addressed exclusively the linear-elastic behavior of these materials; details and references
can be found in a report by Hashin (1972) and review articles by Willis (1981, 1982) and
Hashin (1983). In this paper, we are concerned with the overall behavior of fiber-reinforced
composites in which one or more of the phases undergoes plastic deformation. The number
ofpapers dealing with this aspect of the behavior offiber composites is comparatively small.
Next, we give a brief review of some of the relevant contributions.

Among the first contributions, Hill (1964b) extended analogous results for the overall
elastic moduli of linear-elastic fiber composites (Hill, 1964a) to obtain corresponding
estimates for the incremental moduli of ductile fiber composites (in the context of flow
theory ofplasticity). An alternative approach using the methods oflimit analysis to estimate
the overall yield strength of composites [see Drucker (1959)] was applied by Shu and Rosen
(1967), Majumdar and McLaughlin (1975) and de Buhan et al. (1990) to fiber composites.
Micromechanical models involving empirical adjustments were developed by Hashin
et al. (1974), Dvorak and Bahei-EI-Din (1987) and Sun and Chen (1991), among others,
to predict the yielding and post-yielding behavior of fiber composites. The predictions of
some of these models were tested experimentally by Dvorak et al. (1988) on a boronf
aluminum system. More recently, Zhao and Weng (1990) developed an approximate pro
cedure, based on the Mori-Tanaka (1973) method, for estimating the effective constitutive
relations of composites reinforced by aligned spheroidal inclusions, which include fibers as
a special case. On the other hand, Talbot and Willis (1991) provided a rigorous bound for
the effective energy functions of ductile fiber-reinforced composites by application of a
nonlinear generalization ofthe Hashin and Shtrikman (1962) variational principles, initiated
by Willis (1983) and developed further by Talbot and Willis (1985, 1992). In addition, these
authors carried out explicit calculations for the case of incompressible fiber-reinforced
composites. Ponte Castaneda (1992) obtained similar bounds and additional estimates of
the Hashin-Shtrikman type, as well as bounds of the Beran type, for the effective energy
functions of incompressible fiber composites through use of a different variational
procedure, proposed by Ponte Castaneda (199Ia). Finally, Suquet (1992) and Leblond et
al. (1993) applied an altogether different method to obtain bounds and estimates, respec-
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tively, for the overall energy functions of power-hardening materials weakened by cyl
indrical voids.

Our aim in this paper is to develop and generalize the results of Ponte Castaneda
(1992) for fiber-reinforced composites. The method used is based on a variational principle
that enables the expression of the effective energy functions of nonlinear composites in
terms of optimization problems involving the effective moduli of appropriate families of
linear comparison composites. Thus, the variational principle suggests a procedure for
generating bounds and estimates for the effective behavior of nonlinear composites from
known estimates and bounds for linear composites with similar microstructures. The pro
cedure was applied by Ponte Castaneda (1991a, b, 1992) to statistically isotropic composites
with general isotropic constitutive behaviors for the phases. The specific examples of
nonlinear materials reinforced by rigid and linear-elastic inclusions, or weakened by voids.
were considered in these references. The procedure may also be applied to anisotropic
composites. This has been carried out by deBotton and Ponte Castaneda (1992) for ductile
laminated composites, and by Ponte Castaneda and deBotton (1992) for special classes of
anisotropic composites with rigid-perfectly plastic phases. In this work, we continue our
study of the behavior of anisotropic nonlinear composites by considering the application
of the procedure to transversely isotropic, fiber-reinforced composites with general ductile
behavior (including compressibility) for the isotropic phases.

The rest of the paper is arranged as follows. In Section 2, we review the definition of
effective prpperties and recall the variational principle of Ponte Castaneda (1992). Next. in
Section 3, we make use of the bounds of Hill (I964a) and Hashin (1965) for linear
elastic fiber composites to generate corresponding bounds and estimates for ductile fiber
composites. In Sections 4, 5 and 6, we consider some special classes of fiber-reinforced
composites, for which the expressions for the bounds and estimates of Section 3 may
be simplified further. Thus, we consider the cases of general multiphase incompressible
fiber composites, hollow-fiber composites, and two-phase, compressible metal-matrix com
posites. Finally, in Section 7, we compute the effective stress-strain relations of a specific
aluminum-matrix composite, reinforced by linear-elastic boron fibers.

2. EFFECTIVE PROPERTIES AND THEIR VARIATIONAL CHARACTERIZATION

In this section, we briefly review the definition of effective properties and their vari
ational characterization. More general discussions, in the context of the inelastic behavior
of composite materials, may be found in the articles of Hill (1967) and Suquet (1985). For
our purposes, a composite is a heterogeneous material made up of two or more distinct
phases, and characterized by two separate length scales: a macroscopic scale L, and a
microscopic scale I, such that I « L. The macroscopic scale describes the gross size of the
specimen and the scale of variation of the applied loading, and the microscopic scale
characterizes the size of the typical inhomogeneity in the material. Thus, a composite is
microscopically heterogeneous, but macroscopically homogeneous.

We consider a representative specimen of the composite n, with boundary an. For
simplicity, we choose units such that the volume of the specimen is unity. We assume that
the constitutive behavior of the distinct phases in the composite is characterized by the
deformation theory of plasticity or, equivalently, by nonlinear infinitesimal elasticity. How
ever, we note that the usual approximate extensions may be made for composite materials
characterized by the flow theory of plasticity [see Budiansky (1959) and Hashin et al.
(1974)]. Thus, at a point x E n, the relation between the strain field s(x) and the stress field
O'(x) is given by

au(x,O')
s(x) = ~ .

00'
(1)

where U(x,O') is the local complementary energy-density function of the composite.
Then, following Hill (1963), when the composite is subjected to the uniform traction
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0'0 = an, X E an,
1867

(2)

where 0 is the outward unit normal to an and;' is a constant symmetric tensor, its effective
behavior may be characterized in terms of the effective complementary-energy function 0,
with

80
8 = a;,' (3)

where 8 is the mean value of the strain field. We also recall that, under the boundary
condition (2), the mean value of the stress field is precisely a.

In view of (3), the problem of characterizing the effective behavior of the composite
reduces to that of computing its effective complementary energy-density function 0. This
may be accomplished directly by means ofthe principle ofminimum complementary energy,
stating that

where

0(;,) = min r U(x,O') dv,
"ES(i) Jo

S(ti) = {O'IV'O' = 0 in 0., and 0'0 = tio on an}

(4)

(5)

is the set of statically admissible stress fields. The variational principle (4) is equivalent to
a standard boundary value problem, governed by the equilibrium and the compatibility
equations, together with the boundary conditions (2). We note that composite materials
may exhibit sharp interfaces across which material properties are discontinuous. Conse
quently, at these interfaces, the equilibrium and compatibility equations must be interpreted
in their weak forms enforcing continuity of the tractions and of the tangential components
of the strain tensor, respectively.

In addition to the analytical difficulties associated with the heterogeneity of the
problem, difficulties also arise because of the nonlinearity of the problem. Precisely to deal
with this later difficulty, a variational procedure was introduced by Ponte Castaneda (1991a,
1992). This procedure is based upon a variational principle that expresses the effective
energy function of a given nonlinear composite in terms of an optimization problem
involving the effective energy functions of a class of linear comparison composites. Conse
quently, well-known estimates and bounds for the effective energy functions of linear
composites may be used to generate corresponding estimates and bounds for the effective
energy functions of nonlinear composites. Here, we will make use of this method, together
with existing results for linear-elastic fiber composites, to obtain bounds and estimates for
the behavior of nonlinear, ductile fiber composites.

We will restrict ourselves to composites where all the individual constituents are
isotropic with energy-density functions depending only on the first and second isotropic
invariants of the stress tensor. Thus, the local complementary energy function may be
expressed in the form

(6)

where I/J is a nonnegative function, which is convex in its last two arguments and satisfies
the condition I/J(x; 0, 0) = 0 for all x. The precise definitions of the two isotropic invariants,
the mean (hydrostatic) stress 17mand the effective shear stress 'e, are given by relations (A2).
Additionally, we assume that there exists a function f(x, ve, vm) = I/J(x, 'e, urn) with Ve =
,; and Vm = 0';, such that f is convex in its last two arguments (this is the so-called strong
convexity hypothesis). This assumption, implying that the dependence of U on the mag-
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nitude of the stress tensor is stronger than quadratic, is consistent with the anticipated
behavior of elastoplastic materials.

In the remainder of this section, we briefly review the variational principle. For further
details, we refer the reader to Ponte Castaneda (1992). First, we note that under the above
strong convexity assumption, the energy-density function U admits the representation

where

U(X,u) = max {Uo(x,u)- V(X;Jlo,Ko)},
,uO,KO):O

(7)

(8)

corresponds to the local energy-density function of a linear-elastic solid with shear modulus
Jlo(x) and bulk modulus Ko(X), and where

V(X;Jlo,KO) = max {Uo(x,u)-U(x,a)}.
11

Then, substitution of (7) into (4) yields the variational statement

(J(ii) = max { (Jo(a) - rV(x ;Jlo(x), Ko(X») dX},
I'O(X).KO(X) '" 0 Jo

where

(Jo(a) = min r Uo(x,a)dx,
I1ES(<i) In

(9)

(10)

(11)

is the effective energy function of the linear comparison composite with local energy-density
function Uo, as given by relation (8). We emphasize that, under the strong convexity
hypothesis, the variational statement (10) (in terms of the linear comparison composite) is
completely equivalent to the classical principle of minimum complementary energy.

Next, we specialize the above variational statement to the case of composites with
distinct homogeneous phases. Thus, we consider composites made up of n isotropic phases.
Each phase is governed by an arbitrary complementary energy-density function satisfying
the strong convexity assumption, with u(r)(a) = rjJ(r)(re, am) (r = 1, ... , n). Then, the local
energy function of the composite may be written:

n

U(x,u) = L X(')(x)U(')(u),
,~ I

(12)

where Xl') (equals I when x is in phase r, and 0 otherwise) is the characteristic function of
the rth phase. The volume fraction of the rth phase is given by

(13)

An estimate for the effective energy function of the nonlinear composite may be
obtained by restricting the set of arbitrary comparison moduli Jlo(x) and Ko(X) in (10), to
the set of piecewise constant moduli (with a different, but constant, modulus over each
phase). Consequently, the variational principle (10) yields a bound for the effective energy
function of the nonlinear composite (Ponte Castaneda, 1992), given by
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Fig. I. A two-phase fiber-reinforced composite.
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(14)

(15)

(16)

In (14), 00 corresponds to the effective complementary-energy function of a linear com
posite with the same distribution of phases as the nonlinear composite, i.e.

00(0) = min [ ±X(r)(x) U~)(t1) dx.
...eS(") Jo r= I

Thus, each phase is homogeneous and isotropic with shear and bulk moduli Jl~) and ,,~),

respectively. We emphasize that expressions for Vo, in the form of bounds and estimates
of various types, are available in the literature for several classes of composite materials,
including fiber composites. We note that lower bounds for 00 lead through (14) to cor
responding lower bounds for 0, while, on the other hand, upper bounds for 00 lead only
to estimates (not rigorous bounds) for the corresponding upper bounds for 0 (we call such
estimates upper estimates).

3. APPLICAnON TO ELASTOPLAsnc FIBER COMPOSITES

In this section, we apply the procedure described in the previous section to obtain
bounds and estimates for the effective behavior ofelastoplastic fiber composite. Henceforth,
the term fiber composites, is used to describe the class of n-phase composites with isotropic
phases in prescribed volume fractions, and overall transversely isotropic symmetry for the
composite. Thus, the microstructure of this class of materials is characterized by a stat
istically isotropic distribution of the phases in the plane transverse to the symmetry axis n
(see Fig. 1). In Appendix A, we briefly review some ofthe properties of transversely isotropic
materials, which will be quoted as needed in the developments to follow.
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We begin by considering the general case ofn-phase fiber composites. Thus, we provide
rigorous lower bounds, as well as upper estimates, for the effective energy functions of such
composites. In addition, we also provide corresponding expressions for the effective stress-
strain relations of such composites. The lower bounds and upper estimates for the effective
energy functions of the nonlinear composites are obtained via the procedure described in
Section 2 in terms of the corresponding bounds for the effecive energy functions of the class
of linear, n-phase, comparison fiber composites.

The constitutive behaviors of the phases of the linear comparison composite may be
expressed via the fourth-order elasticity tensors

( l7)

where the expressions for K and J, the isotropic projections of the identity tensor, are given
by relation (AI). The corresponding energy-density functions U~) are given by (16). Bounds
of the Hashin-Shtrikman (1962) type for this class of linear composites were given by Hill
(I964a), Hashin (1965) and Walpole (1969).

Following Walpole's representation, we have the following lower bound for the effec
tive energy function of the linear comparison composite, namely,

(18)

where

In this relation,

I [I] (I I) [3J I [4JM*(,u,K) = -E + - +.----- E + -E ,
o 2,u 2,u K+ !,u 2,u

(20)

where the tensors E[qj (q = I, ... ,4), the four transversely isotropic projections of the
identity tensor, are given by relation (A4), and ,ult) = max {,u~)}, KIt) = max {K~)}. Then,

r r

upon substitution of (18) into (14), the corresponding lower bound for the effective energy
function of the nonlinear fiber composite becomes

(21)

where the functions v(r) are given by relations (IS).
Moreover, it is demonstrated in Appendix B that, once the optimization problem (21)

is solved, the corresponding estimates for the effective stress-strain relations are given by

(22)

where ,a~) and K~) are the optimized values of the variables .u~) and K~), respectively. We
note that, in spite of its appearance, (22) is not a linear relation between the average stress
and strain. This is because MbHS-) depends on the average stress through ,a~) and K~). We
also note that expressions for the stress-strain relations derived from bounds on the effective
energy are not guaranteed to be bounds for the effective stress-strain relations of the
composite.

Expressions for an upper estimate for 0, denoted O(HS+l, may be obtained in an
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analogous manner. Thus, the upper estimate for the effective energy functions of the
nonlinear fiber composites is given by a relation similar to (21) with UhHS -) replaced by

U-(HS+)(-) - ~ - (M- (HS+» -o (1 - 2 (Jij 0 ijk/Uk!' (23)

In this expression, MhHS +) is given by a relation analogous to relation (19), except that
Ilh+) and Kh+) are replaced by Ilh-) = min {Il~)} and Kh-) = min {K~)}, respectively. The

r r

associated expressions for the effective stress-strain relations are similar to relations (22),
and are given in terms ofMhHs+)(jl~),K~», where jl~) and K~) are now the optimized values
of the variables Il~) and K~) arising from the solution of the optimization problem for
U(HS+).

From a practical point of view, the class of two-phase, transversely isotropic fiber
reinforced composites is probably the most important. For this case, Lipton (1991) has
shown that the linear bounds (18) and (23) are optimal. The lower bound is attained
by a fiber composite made up of a matrix of the stiffer phase weakened by fibers of the
softer phase, while the upper bound is attained by a fiber composite made up of a matrix
with the more compliant phase reinforced by fibers of the stiffer material. Therefore, the
linear bounds UbHS

-) and ulrs
+) may be regarded as estimates for the effective energy

functions of these two types of linear-elastic, fiber-reinforced composites, respectively. It
follows from the discussion in Section 2 that U(HS-) and U(HS+) may therefore also be
regarded as estimates for the effective energy functions of the corresponding classes of
nonlinear fiber composites. Thus, we may regard the lower bound (upper estimate) as an
estimate for the effective energy function of a nonlinear fiber composite involving fibers
(matrices) of the weaker phase, and matrices (fibers) of a stiffer material. In particular, the
associated expressions for the stress-strain relations may also be used as estimates for the
behaviors of these two types of nonlinear fiber composites with extremal properties. In
Sections 6 and 7, we will discuss this possible interpretation of the results in more detail.

To conclude this section, we note that the representations for the lower bound U(HS-)

and the upper estimate U(HS+) are given in terms of4n-dimensional optimization problems.
From a computational point of view, obtaining the solutions of these problems is straight
forward, especially because the functions v(r) are convex in the optimization variables Il~)

and K~). Nevertheless, in some cases, these representations can be simplified further with
the help of the identity given in Appendix C. In the following section, dealing with the
special case of incompressible fiber composites, we make use of this approach. In later
sections we consider the more complicated case of compressible fiber composites.

4. THE INCOMPRESSIBLE FIBER-REINFORCED COMPOSITES

In this section, we are concerned with fiber composites that are made up of n incom
pressible phases (and are hence incompressible). Neglecting dependence on the third
invariant of the stress, we have that the complementary energy-density functions of the
phases depend only on the effective shear stress, i.e.

(24)

Then, expression (21), together with (15), reduces to the following expression for the lower
bound on the effective energy function of the nonlinear fiber composite, namely

In the above relation, the lower bound for the effective energy function of a linear
comparison composite (made up of n incompressible isotropic phases) UbHS -) is given by

SAS 30:14-C
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relation (18), with K~) = 00 (r = I, ... , n) in expressions (19) and (20) for MbHS -) and M~,

respectively. Then, by means of identity (e2), UW S
-) may be rewritten in the form

_ I {II
U(HS-) ii = - min .(r) - (r) (r) * (+) (r)o () 2 L C O'ij[nkli;[(Mo )klmn+(Mo(/lo )h'mn]nmnpq

n(r) r= 1

lhl

n

where the optimization variables n(r) are subject to the constraint L c(r)n(r) = I, and satisfy
r= 1

the symmetry conditions n ijkl = n jikl = n ij1k . In general, expression (26) involves opti
mization over 36n entries of the n(r). However, due to the symmetries of the tensors M~)

and M~, only 6n nonzero entries are needed. Thus, the optimization variables may be
chosen in the form

6

n(r) = " w(r)E[q)LJ q - ,
q~ I

(27)

where the definitions of E[5j and E[6] are given by (A7) of Appendix A, and where the
optimization constraint implies that wq = 1, (q = I, 2, 3, 4) and wq = 0, (q = 5, 6). With
this choice for the n(r),Uh

HS
-) can be expressed in terms of the three imcompressible trans

versely isotropic invariants of ii, namely, the deviatoric shear stress Td' the transverse shear
stress Tp and the longitudinal shear stress Tn (see Appendix A). Furthermore, UhHS -) depends
on these three invariants and the wf) (q = 1, ... ,6) only through the following 4n groups:

(28)

However, following a procedure similar to the one described in Appendix B [see the
discussion preceding eqns (B8)] to eliminate the optimization constraints, and using the
identity max {I(x+y)+g(x)} = max {I(x)} +max {g(x)}, the number of the optimization

x.y x x

variables can be further reduced to 2n variables. In terms of these variables (w(r) and 11(r»,

the lower bound for the effective energy function of the linear comparison composite
becomes

Upon substitution of (29) into (25), we arrive at the following expression for the lower
bound for the effective energy function of the nonlinear, incompressible fiber composite
U(HS-), namely:

where

U(HS-)(ii) = m!nw~:~I{,tl c(r) ",(r)Cdr
» + c(S)"'(S)(r~S»},

11(r).ij= I r*.~

(30)
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.~) = j(f;+f~)(w(r)2+(fd,,(r)2, (r = I, ... ,n; r ~ S),

r~s) = (f; +f~) [(W(9) 2+ ttl ~~: (I-W(l)2J+ (fd,,<s) 2.
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(31)

Expression (30) was obtained from (25) by interchanging the order of the optimization
operations over the variables J.l~) and the w(r), ,,(r) variables, respectively. This is allowed
by the Saddle Point Theorem (Rockafellar, 1970) since the functions (- vCr)~ are concave
in the variables J.l~), while (29) is convex in the variables w(r) and ,,(r). Also, the minimum
over S implied by J.l b+) in expression (29) has been taken outside in expression (30). In
addition, we made use of the equality (7), specialized to each of the phases. Finally, we
note that there are n "branches" (one for each phase) to the solution of (30), and that the
minimum over all the branches yields the desired lower bound.

Once the minimization problem (30) is solved, an estimate for the associated stress
strain relations may be obtained by simple differentiation with respect to iI. However, by
the results of Appendix B, in the computation of the effective stress-strain relations, we
may regard the optimization variables w(r) and ,,(r) as constants as far as derivatives with
respect to iI are concerned. Thus, the expressions for the effective stress-strain relations
may be written in the form :

where w(r) and ~(r) are the optimized values of the variables w(r) and ,,(r) [from (30)],
respectively. The s-phase in the above expression corresponds to the branch attaining the
minimum in (30), and the expressions for i~r) = .~)(w(r), ~(r», and i~s) = .~s) (w(r), ~(r» are
obtained from (31).

The upper estimate for the effective energy function of the nonlinear incompressible
fiber composite may be obtained in a similar manner. Thus, the expression for the upper
estimate has precisely the same form as the lower bound (30), except that the minimum
over all phases is replaced by a maximum. A corresponding estimate for the effective stress
strain relation may also be obtained by means of (32), where, in this case, the s-phase
corresponds to the branch attaining the maximum in (30).

The representation (30) for the lower bound (or the upper estimate) involves mini
mization problems over 2n constrained variables. However, the number of optimization
variables can be further reduced to 2(n-l) unconstrained variables (see Appendix B). For
example, in the case of a two-phase, incompressible fiber composite, the optimization
constraint may be eliminated by letting w(\) = I +C(2)W, W(2) = I-c(l)w, ,,(\) = I +C(2)q,
and q(2) = l-c(l)l1. In terms of the two unconstrained variables wand q, the two branches
of (30) are

tJ(I)(iI) = min {c(l)t/J(I)(j[(1 +c(2)w)2+c(2)w2](f~+i~)+(1+C(2)11)2iJ) + ...
w,q

+C(2)t/J(2) (j(l-C(\)W)2 (i; +i~)+ (l-c(I)q)2il)}, (33)

and

tJ(II)(iI) = ~,i,}l {c(l)t/J(I)(j(1 +C(2)W)2(f~+iD+ (I +C(2),,)2iJ) + ...

+C(2)t/J(2) (j[(l-c(I)w)2 +c(I)w2](f~+i';)+ (l-c(l)q)2iJ)}.

Then, the lower bound and the upper estimate are equal to the smallest and the largest of
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the two branches, respectively. The corresponding estimates for the effective stress-strain
relations are obtained by making appropriate use of (32).

We note that expressions for lower bounds on the effective energy functions of incom
pressible nonlinear fiber composites have been obtained previously by Talbot and Willis
(1991). These authors made use of the Talbot-Willis variational method, resulting in a
different, more complicated, form for the bounds than the form presented here. We also
note that expressions (30) for the lower bound, and the analogous expression for the upper
estimate, were first derived by Ponte Castaneda (1992) by application of the variational
principle (10). However, the derivation given here, in terms of the identity (C2), is different,
and can be generalized to the class of compressible, nonlinear fiber composites. This is
accomplished in the next section. We also note that expressions (32) for the effective stress
strain relations of the fiber composite are presented here for the first time.

5_ COMPRESSIBLE FIBER-REINFORCED COMPOSITES

With the insight gained in the previous section, we attempt in this section to obtain
corresponding results for n-phase fiber composites with compressible, nonlinear, isotropic
phases. Again, we will make use of the identity (C2) in the expressions for the bounds of
the linear comparison composite. Thus, expressions for the lower bound and the upper
estimate for the effective energy function of the nonlinear, compressible fiber composite
may be obtained by following exactly the same steps that led from (25) to (30).

We begin by making use of the same choice for the optimization variables n as in (27)
to rewrite the expression for UIJHS ) in terms of the four transversely isotropic invariants
of is: the in-plane hydrostatic stress O'p, the normal tensile stress O'm the transverse shear
stress I p ,and the longitudinal shear stress In (see Appendix A). Next, we observe that the
dependence of UbHS -) on these four invariants and on the six optimization variables (for
each phase) is only through the following 4n groups:

(34)

It can be further shown that the 4n groups of (34) may be replaced by the 4n groups: O'plJl'l,
O'n<jJ(r), IpW(r) and Ino (r) , respectively. Consequently, the lower bound for the effective energy
function of the linear comparison composite may be rewritten in the form:

+ _1__ [20' .,(r) + 10' -h(f)]2]} (35)
2K~) 3 P'I 3 n'l' ,

where

(36)

and where IT = {1J(r), <jJ(Y), W lf), Olf) Iii = I, ;p = I, ill = I, (J = I} is the reduced set of
(constrained) optimization variables, We note that the choice of this set is not unique, and
that in some cases, as when O'p = 0 or O'n = 0, other choices may be preferred (see Section
6). This is because expression (35) becomes degenerate when O'p = 0, or O'n = o.

With expression (35) for the linear lower bound, relation (21) leads to the following
form for the nonlinear lower bound:



where

and where
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t¥) = J('40) (r» 2 + (fn9(r» 2 + hO'p1](r) - O'ncP(r» 2 ,

a(r) - 2ii n(r) + 10' ,J.,(r)
m - 3 P" 3 n'l' ,
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(37)

(38)

Here, we have made use of the Saddle Point Theorem to interchange the order of the
minimum over the set II with the maximum over the comparison moduli ,u~) and K~), We
have also made use of relation (7) specialized to each of the phases to simplify the above
expression. However, it should be noted that relation (7) cannot be used in (39) due to the
coupling between the two optimization variables ,u~J) and K~2). The representation (37)
involves a minimization problem over 4n constrained variables, along with the intermediate
four-dimensional optimization problem (39). However, the constraint can be easily
embedded in (37) to reduce the dimension of the optimization problem to 4(n-l) (see
Appendix B). Finally, we note that the problem (37) has n2 branches (one for each pos
sible combination of Jl~l) and K~2), Sj, S2 = I, ... , n), and that the lower bound is then
obtained by taking the minimum over all these branches.

The upper estimate for the effective energy function of the compressible, nonlinear
fiber composite may be obtained in a similar manner. Thus, the expression for the upper
estimate has precisely the same form as that for the lower bound (37), except that the
minimum over all possible combinations of ,u~I) and K~2) is replaced by a maximum.

On the face of it, the representation (37) for the lower bound (or the upper estimate)
for the effective energy function of the nonlinear fiber composite does not appear to offer
much of an advantage over the previous representation (21). However, in many practical
applications, associated with special classes of fiber-reinforced composites, further sim
plification of the above representation is possible. For example, if a particular phase, say
phase S, is stiffer (weaker) than the others, only one branch of the solution needs to be
evaluated since, in this case, the choice SJ = S2 = sleads to the lower bound (upper estimate).
Further, we note that whenever the intermediate optimization problem (39) can be solved
analytically, the representation (37) is preferable because it involves a simple minimization
problem, in contrast with expression (21) which requires the solution ofa minimax problem.
From a computational point of view, this eliminates the need for the iterative procedure
associated with the evaluation of the functions v(r) in (21). To illustrate this point, let us
examine the class ofcompressible fiber composites with one or more incompressible phases.

Thus, we consider a compressible, n-phase fiber composite, with at least one incom
pressible phase. Then, the trivial choice K~2) = 00 attains the minimum in (37). This further
allows the evaluation of the optimization problem (39). The lower bound reduces to the
3n-dimensional constrained minimization problem:
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(40)

r~r) = J(frH~)(w(~i52+f(o=~,,(;j--=an<pV))2, (r = I,,,., n; r oF 05), (41)

r~s) = ;;;;~~~:'(');2:!(;p~(")=~~<p(S»)2+ ±C
U
)[O=~(1-,,(t))2+(f~+f~)(I-wll))1J,

f~ I

and

Within this class of composites, the sub-class of hollow-fiber composites (for which
the above expression for the lower bound reduces to a simple, explicit result) is of particular
interest. Thus, we take the complementary energy-density function of the matrix (phase I)
to be of the form V( 1)(0') = "'(re)' Correspondingly, the complementary energy-density
function ofthe cylindrical voids (phase 2) is given by V(2)(a) = 00 ifa =1= 0, and 0 otherwise.
The minimum in (40) is trivially attained by the choice s = I and W(2) = 1)(2) = ,,(1) O.
The values of the variables w (11, <p (!) and" (I) then follow from the optimization constraint.
Substitution of these values into (40), leads to the following expression for the lower bound
for the hollow-fiber composites

where c = e(2) is the volume fraction of the voids. The corresponding estimate for the stress·
strain relation may be derived with the help of (AI2). We note that when "'(re) = a(re)" I I, .

where a is a non-negative constant and n > 1, the above result reduces to the lower bound
derived independently by Suquet (1992) for power-law materials containing cylindrical
voids. [The more general result (42) is also given by Suquet (1992).)

Anotherclass ofcomposites, ofgreat practical significance, for which the representation
of the lower bound may be simplified, by explicit evaluation of (39), is the class of n-phase
fiber composites for which the stiffest phase is linear. In the following section, we deal with
the special case of two-phase, fiber-reinforced composites of this type.

6. APPLICATION TO METAL-MATRIX COMPOSITES

Among the various classes of fiber-reinforced composites, the class of metal-matrix
composites is one of the most common. In this section, we restrict our attention to this
important class of composites, which are made up of ductile matrices reinforced by stiffer,
linear-elastic fibers. Since the plastic strains in the metal phase are independent of the
hydrostatic stresses, we assume that the behavior of the matrix (phase I) is governed by a
complementary energy-density function of the form:

(43)

where the function <p is non-negative and satisfies the strong convexity assumption described
in Section 2, and where K(I) is the usual bulk modulus. Further, to account for the initial

linear-elastic behavior in shear of the metal phase, we assume that <p(re) = 2 In) T~ +f(!e)'
!t
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where jJ.( I) is the elastic shear modulus. On the other hand, the behavior of the fiber material
(phase 2) is governed by the quadratic complementary energy-density function

(44)

where jJ.(Z) and K(Z) are the corresponding shear and bulk moduli, respectively. Finally, to
enforce the assumption that phase 2 is stiffer than phase 1, we let jJ.(Z) > jJ.(l) and K(Z) > K(l).

We begin by considering the lower bound (j(HS-). As mentioned in the previous section,
since phase 2 is linear and stiffer than phase 1, the intermediate optimization (39) may be
evaluated explicitly. Further, because of the particular choice for the energy-density func
tions 1/1(1) and 1/1 (Z), a different choice for the reduced set of optimization variables in
(34) leads to additional simplification of the problem. Thus, with the new choice for the
optimization variables, the lower bound for the effective energy function of the composite
may be given in terms of the following 3-dimensional minimization problem

(j<HS-)(a) - min{c(l)[m(r(I))+ _1_«(j(l))Z]+c(Z) [_I_(r(Z))z+_I_«(j(Z))Z]} (45)
- ~.w,8 '1' e 2K(I) m 2jJ.(Z) e 2K(Z) m ,

where

(r~1))Z = f;(1 + c(Z)ro)Z + f~(1 + c(2)lJ)Z + 1(Up- un)z(1 +c(Z),,)Z,

(r~Z))Z = fn(1- c(l)ro)Z + C(I) Po(jJ. I?) , KI?))roZ] + f~[(1-c(l)lJ)Z+ c(l)lJZ] + ...

+ Hup- un)Z (1- C(I),,)Z + c(l)[!up(21j> +,,) + !un(1j> -"W,
(j~) = (iUp+!un)(1 +c(Z)Ij»,

(j~) = (iup +1Un)(l- c(l)Ij».

In the above expression, Po is given by relation (36) and

(46)

(47)

Once the minimization problem (45) is solved, the corresponding estimate for the
effective stress-strain relation may be obtained by following the same procedure followed
for the incompressible fiber composite. Thus, the estimate for the stress-strain relation may
be written in the form

8 = ~ {c(l) [m(i(l)) + _1_(6'(I))Z] +c(Z)[_I_(i(Z))Z + _l_(6'(Z))Z]} (48)aa 'I' e 2K(I) m 2jJ.(Z) e 2K(Z) m ,

where i~l),i~Z),6'~) and 6'~) are evaluated from (46) at the optimal values of", ro and lJ.
Further, in (48), the derivatives with respect to a are evaluated with ", ro and lJ fixed.
We emphasize that due to the different choice of the optimization variables, the above
representation for the lower bound is subject to the restrictions (2cTp+un):F 0 and
(up - un) :F 0 [instead of the restrictions up :F 0 and Un :F 0, for the representation (37)]. For
consistency, we will make use of the same set of optimization variables in the following
representation for the upper estimate, although, in this case, the number of the optimization
variables cannot be reduced (from 4 to 3).

The evaluation of the upper estimate is more complicated since in this case the inter-
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mediate optimization problem (39) cannot be solved explicitly. However, if the ratio of the
initial shear modulus to the bulk modulus of the weaker, matrix phase is small (i.e.
/l(l)/K(I) « 1), significant simplification may be achieved by means of the following approxi
mation for f30, namely.

(II ['(' ((»)2J(II .(1) _ /lo 11 0
f30(/l0 ,11.0 ) - 1+2-:(1) +0.(1) .

11.0 11.0

Then, the estimate for the upper bound for the effective energy function reduces to

(49)

UIHS+)(O-) ~ min {c(l) [cp(r~II)+ 2-
I

(I) (a~»2J+cI2)[2 \x)(rFI)2+ ,,~(il (al~21)2J},
~,¢,IO,e K /l ~K

(50)

where

(r~I»2 = i;[(l +C (2 )W)2 +C(2)W 2] +i;[(1 +C (2 )0)2 +(,121f)2] + ...

+ hO'p - O'n) 2(I + c( 2)11) 2+ C(2)[~O'p (24) + 11) +\O'n( 4> -11)f.

(r~2)2 = i;(I- c( II W )2 + i 2(1 - c l I)f)) 2+ ~(O'p - O'n)2(1 - C l ()l1f.

(a~1)2 = (~O'p+~O'n)2(1 +C
(2

)4»2 +2C IIJ i;w 2
,

a~) = (~O'p+~O'n)(l-c(l)4». (51)

We recall that (50) is subject to the restrictions (2O'p+O'n) =f- 0 and (O'p-O'n) =f- O. Also, we
remark that, fortunately, the approximation (49) holds for most metal matrix composites.
For example, when /l( I)/K( I) < 0.45 (or in terms of the associated Poisson's ratio, v( I) > 0.3),
the maximum difference between (50) and the exact solution of the expression for O(HS+ I
is only about 2% (see Fig. 3). Finally, we note that when Tp = 0 the two forms are equal.

The associated expressions for the stress-strain relations may be evaluated from the
upper estimate for the effective energy function in the usual way. Thus, the expressions for
the effective stress-strain relations have the same form as (48), but with i~I), i~2),d~1 and
d~) evaluated from (51) at the optimal values of the variables 11, 4>, (J) and f) [from (50)].

We conclude this section by noting that the lower bound (45) is actually an optimal
bound (i.e. no bound that is better can be given for this class of composites). This can be
shown by following arguments analogous to those given by Ponte Castaneda (199Ib) in
the context of statistically isotropic, two-phase, nonlinear composites with one linear phase.
From a more practical point of view, however, the above results for the lower bound may
be used as estimates for the effective energy functions of two-phase composites with ductile,
nonlinear fibers embedded in a linear-elastic matrix (see Section 3). Alternatively, the upper
estimate (50), together with the corresponding estimate for the stress-strain relations, serve
as estimates for the behavior ofcomposites with a ductile matrix reinforced by stiffer, linear
elastic fibers.

We note that the class of microstructures associated with the upper estimates (for the
effective energy functions) correspond to those typical of metal-matrix composites. This
suggests that the predictions for the effective stress-strain relation obtained from the upper
estimate O(HS+) could be used as estimates for the effective behavior of metal-matrix
composites. Indeed, the study of the effective behavior of an aluminum-matrix composite,
that is carried out in the next section, confirms this expectation.

7. APPLICATION TO AN ALUMINUM-MATRIX COMPOSITE REINFORCED WITH
BORON FIBERS

In this section, we specialize the results of the previous section to the case ofa nonlinear,
compressible, fiber composite made up ofan aluminum-matrix reinforced with boron fibers.
The effective behavior of the composite is presented in terms of relations between the four
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transversely isotropic stress modes and the corresponding four strain modes (see Appendix
A). These relations show the overall response of the anisotropic composite to different
loading modes and reveal the coupling among the different modes.

Aluminum (phase 1) is a ductile material with a uniaxial stress-strain curve that can
be approximated by a "linear-plus-power" law [see Fig. 2 in Adams (1970)]. Accordingly,
we assume the following form for the energy-density function of the aluminum matrix:

(52)

Here, H is the unit step function (equal to 0 when s ~ (Jy' or to 1 otherwise) and 80 and (J0

are the strain and stress normalization factors, respectively, such that (Jo/80 = 3tl(l), with
tl(l) denoting the elastic shear modulus. Also, K(I) is the bulk modulus and (Jy is the yield
stress in tension. Boron (phase 2) is a brittle material that behaves linearly up to failure.
Its energy-density function is given by (44), with tl(2) and K(2) denoting the shear and bulk
modulus of boron, respectively.

The lower bound and the upper estimate for the effective energy function of the
composite may then be represented in dimensionless form via the relation:

U-(HS+) {- - - - (2) }
__ (-) _ G(+) (Jp (In Tp 2. (Jy ~ (I) (2) (2)

(J - ,,'" (I)' v ,v ,n, C ,
(J080 (Jo (Jo (Jo (Jo (Jo tl

(53)

where G(-) and G(+) are obtained from (45) and (50), respectively. The Poisson's ratios of
the two phases v(I) and V(2) are defined by

(54)

The corresponding estimates for the four transversely isotropic strain modes are then
determined by making use of (48) along with (A5).

The numerical values for the six parameters in (54) are chosen so that a comparison
with the corresponding experimental results of Adams (1970) may be carried out. Thus,
the properties of the aluminum matrix are taken from Fig. 2 in Adams (1970), which
presents the uniaxial stress-strain curve for the aluminum. Similarly, the numerical values
for the elastic constants of the boron fibers, as well as their volume fraction, were also taken
from the same reference. These parameters are

(Jy tl(2)
- = 14.9, (Tj" = 7.47, v(l) = 0.32, v(2) = 0.20, n = 1.82 and C(2) = 0.34,
(J 0 tl

where (Jo = 5.89 MPa and 80 = 9.29 x 10- 5 are the appropriate normalization factors.
Results for the different loading modes of the nonlinear fiber composites, under several

loading combinations, are given in Figs 2, 4,5 and 6. To highlight the effect ofnonlinearlity,
results are also given in the form of short-dash curves for linear fiber composites with the
same elastic properties as the nonlinear fiber composite. Thus, the phases of these linear
reference composites are identical to those of the nonlinear composite with the only
difference being that (Jy is taken to be unbounded for phase 1.

Figure 2 shows a plot of the normalized transverse shear stress tp/Tyversus the nor
malized transverse shear strain ypjyy for three different loading combinations. Here, Ty = (Jy/

J3 and Yy = Ty/2tl(l) denote the yield stress and strain in shear of the aluminum matrix,
respectively. The continuous curves correspond to estimates derived from the lower bound
for the effective energy function, while the long-dash curves correspond to estimates derived
from the upper estimate for the effective energy function. For all three loading combinations,
up = O. The curves denoted by un/tp= tn/tp= 0 correspond to a pure transverse shear load.
Initially, the behaviors of these two stress~strain curves for the nonlinear composites are
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Fig. 2. Lower estimates (continuous curves) and upper estimates (long-dash curves) for the relations
between the transverse shear stress f p and the corresponding shear strain yp of the nonlinear fiber
composites, as well as for the reference linear fiber composites (short-dash lines), for three different

loading combinations: a"/fp = f"/fp =, 0, fn/fp = 2 and a"/fp = 2. Here. ap = 0 in all cases.

the same as those of the corresponding curves for the reference linear composites (short
dash lines). However, the predictions for the effective yield points of the two types of
estimates are different, with both the yield stresses and the yield strains being larger for the
estimate associated with the lower bound on the energy.

The effective stress-strain relations associated with the lower energy bound show post
yield behavior with almost linear hardening with a slope approaching the value

2C(2) fJ.(2)(K(2) +1fJ.(2»)

(2-C(2»)K2+1(8-7c(2»)~(2) . (55)

The corresponding stress-strain relation for the upper energy estimate shows post-yield
behavior with power hardening, where the growth of the strain is proportional to (TnfTy)"
for large Tn'

As discussed in the previous section, the stress-strain relations derived from the upper
estimate for the effective energy function may be used as estimates for the behavior of
composites with a ductile matrix phase and linear-elastic fibers. In this context, it is inter
esting to compare our results with the corresponding predictions of Hashin (1980) [see also
Dvorak and Bahei-EI-Din (1987)], who argues, on physical grounds, the existence of two
distinct failure modes for fiber-reinforced composites with a weaker matrix phase: a fiber
dominated mode in which the composite fails due to fiber failure in tension or compression
along the fibers, and a matrix-dominated mode in which the matrix fails in shear transverse
to, or along, the fibers. According to this model, when the composite is subjected to
transverse shear loads, its yield stress and post-yield behavior are dominated by the behavior
of the ductile matrix. We note that our predictions for the behavior of the composite, from
the stress-strain curve associated with the upper energy estimate, are consistent with
Hashin's model. Thus, our results indicate that the effective yield stress is only slightly
higher than the yield stress of the matrix, and that the post-yield behavior is dominated by
the behavior of the ductile matrix as well.

The coupling between the shear modes f n and f p is illustrated by the two curves for the
proportional loading path fnffp = 2, and the coupling between ifn and Tp by the two curves
for the proportional loading path ifn/"ip = 2. We note that the effect of a combination of
transverse shear loads with any of the other modes is to saturate the linear range of phase
1, accelerating the onset of yield in the composite. Thus, the resistance of the composite to
transverse shear loads is reduced by application of any of the other loading modes. We note
that this softening effect is more marked for the stress-strain curves obtained from the
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Fig. 3. Comparison of the upper estimate for the relations between the transverse shear stress rp

and the corresponding shear strain YP (continuous curve), with the corresponding approximation
(50), based on neglecting terms of order (Jt~I)IK~I)2 (short-dash curve).

upper energy estimate. Also, the coupling effect of the superimposed longitudinal shear in
on the transverse shear mode f p is more pronounced than that of the superimposed uniaxial
tensile stress Un'

To illustrate the consequences of this softening phenomenon, let us consider a cyl
indrical fiber composite bar, subjected to a uniaxial tension load in the fiber direction
combined with a torque aligned with the symmetry axis. At the local level, the stress field
that develops within this bar may be represented by a combination of a uniaxial tensile
stress Un and the transverse shear stress f p• Thus, our results predict that any increment in
the uniaxial tensile stress (with fixed transverse shear stress) will cause additional growth of
the resultant transverse shear strain. The overall contributions ofthe shear strain increments
(within the composite) is to increase the twist angle of the bar. Thus, at the global level,
our results would predict an increase of the twist angle in response to an increment in the
tensile load (with a fixed applied torque).

Figure 3 shows a plot of the normalized shear stress f p/7:y versus the normalized shear
strain ':/P/Yy, in the vicinity of the predicted yield point, when all other stress modes vanish.
Here, we compare the predictions for YP obtained from the exact solution for the minimax
problem [see (37)-(39)] for (j{HS+) (continuous curves) with the corresponding approxi
mation (50) (short-dash curve), based on neglecting terms of order (/lbl

) /Kbl
))2. As we can

see, the two curves are very close, with a maximum error of about 0.5%. We note that the
maximum error between the two curves always occurs near the predicted yield points.

Figure 4 shows a plot of the normalized longitudinal shear stress fn/T:y versus the
normalized longitudinal shear strain Ynhy for three different loading combinations. The
continuous curves correspond to the estimates derived from the lower bound for the effective
energy function, while the long-dash curves correspond to the estimates derived from the
upper estimate for the effective energy function. For all three loading combinations, up =O.

The curves denoted by fp/'fn = un/fn = 0 correspond to a pure longitudinal shear load
along the fibers. We observe that the predictions for the yield stresses, the yield strains and
the post-yield behaviors obtained from the upper energy estimates are very similar to the
predictions of the corresponding curve in Fig. 2 (denoted by Un/fp = fnlfp = 0). This simi
larity is anticipated on grounds of our previous observation concerning the interpretation
of the upper energy estimates as estimates for ductile-matrix composites. Thus, when the
ductile-matrix composite is subjected to shear loads along the fibers, it is expected that its
yield and post-yield behaviors will be dominated by the corresponding behaviors of the
ductile matrix, and hence the similarity between the upperbound energy curves in the Figs
2 and 4.

On the other hand, the curves associated with the lower bounds, in Figs 2 and 4, are
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Fig. 4. Lower estimates (continuous curves) and upper estimates (long-dash curves) for the relations
between the longitudinal shear stress f nand the corresponding shear strain Yn of the nonlinear fiber
composites, as well as for the reference linear fiber composites (short-dash lines), for three different

loading combinations: (fnlfn = fplfn = 0, ip/fn = 2 and ii,5n = 2. Here. ii" = 0 in all cases.

not as close. Although the post-yielding behavior is nearly linear for both cases, there is a
significant difference between the asymptotic slopes of the curves as the stress increases.
In Fig. 4, the slope of the longitudinal shear stress-strain curve approaches the value
2C(2)j1(2)/(2-c(2»), whereas the corresponding slope for the transverse shear stress curve,
in Fig. 2, approaches a lower value, given by relation (55).

The coupling between the shear modes in and i p is illustrated by two curves for the
proportional loading path ip/in = 2, whereas the coupling between ifn and i p is illustrated
by the two curves for the proportional loading path ifn/in = 2. We observe that the super
position ofany of the other modes on the longitudinal shear mode has the effect ofsaturating
earlier the linear range of phase I, thus increasing the apparent ductility of the composite.
Therefore, analogously to the previous case (Fig. 2), the resistance of the composite to
longitudinal shear loads is reduced with the addition of any of the other loading modes.

Figure 5 shows plots of the normalized tensile stress ifn/(Jy versus the normalized tensile
strain Bn/ey for three different loading combinations. Here, ey = (Jy/2j1(Ii(l +V(I)) denotes
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Fig. 5. Lower estimates (continuous curves) and upper estimates (long-dash curves) for the relations
between the nonnal tensile stress iin and the corresponding strain en of the nonlinear fiber composites,
as well as for the reference linear fiber composites (short-dash lines), for three different loading

combinations: iip/iin = in/iin = 0, iip/(fn = 1.5 and fn/iin = I. Here, i p = 0 in all cases.
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the yield strain of the aluminum matrix under uniaxial tensile load. The continuous curves
correspond to the estimates derived from the lower bound for the effective energy function,
while the long-dash curves correspond to the estimates derived from the upper estimate for
the effective energy function. For all three loading combinations, i p = O.

The curves denoted by Up/un = in/Un = 0 correspond to a uniaxial tensile load in the
fiber direction. Initially, the behaviors of the two curves are the same as those of the
reference linear composite (short-dash lines), until phase I yields. The predictions for the
effective yield stress and strain are almost the same, and after yielding, the plastic hardening
of both estimates for the composite is nearly linear. As discussed by Hashin (1980), this
post-yield behavior is expected on physical grounds since the stiff phase dominates the
behavior of the composite in tension (or compression) along the fibers.

The coupling between the two dilatational modes is illustrated by the two curves for
the proportional loading path up/un = 1.5. Thus, we see that the superimposed up leads to
significant stiffening of the composite. We observe that the two curves (for up/un = 1.5) are
initially fairly close to each other (and behave the same way as the corresponding curves
of the reference linear composites). However, after yielding of phase I, the predictions
based on the upper energy estimate are markedly different from the corresponding pre
dictions from the lower energy bound. Thus, the lower energy bound predicts only little
growth of the tensile strain; while the corresponding upper energy estimate actually predicts
a decrease of the normal tensile strain. This interesting behavior is due to the plastic
incompressibility of the aluminum phase. Because the plastic strains in phase I are pro
portional to the stress deviators, and under the above combination of loads, the normal
component of the stress deviator (in the fiber direction) is negative, the plastic part of the
normal tensile strain decreases. According to the lower bound, the magnitudes of the elastic
and the plastic parts of the tensile strain are almost the same, and hence en (the sum of the
two parts) is almost fixed. However, according to the upper estimate, under these loading
conditions, the magnitude of the plastic part of the tensile strain is larger than that of the
elastic part, and hence en decreases.

The coupling between the normal tensile stress and the longitudinal shear stress in is
illustrated by the two curves corresponding to the proportional loading path in/Un = 1. The
effect of increasing the shear load in is to saturate earlier the linear range of phase 1, hence
increasing the apparent ductility of the composite. We note that the difference between the
curves for the lower bound and the upper estimate is relatively small in this case.

Figure 6 shows plots of the normalized in-plane hydrostatic stress up/uy versus the
normalized in-plane hydrostatic strain ip/ey for three different loading combinations. The
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Fig. 6. Lower estimates (continuous curves) and upper estimates (long-dash curves) for the relations
between. the in-plane hydrostatic stress up and the corresponding strain e;, of the nonlinear fiber
composItes, as well as for the reference linear fiber composites (short-dash lines), for three different

loading combinations: an/up = in/ap= 0, an/up = 3.5 and Tn/Up = 1. Here, f p= 0 in all cases.
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continuous curves correspond to the estimates derived from the lower bound for the effective
energy function, while the long-dash curves to the estimates derived from the upper estimate
for the effective energy function. For all three loading combinations, i p = O.

The curves denoted by un/up = in/up = 0 correspond to a pure, plane hydrostatic load
in the transverse direction. Initially, the behaviors of the two curves are the same as those
of the reference linear composite (short-dash lines), until the yielding of phase 1. After
yielding, both types of estimates predict linear hardening for the composites. This suggests
that the in-plane hydrostatic strains are governed by the stiff linear phase. In the case of
normal tensile loads (Fig. 5), it is easy to visualize that the tensile mode (along the fibers)
should be controlled by the stiffer phase; however, that the same behavior should also be
observed for the in-plane hydrostatic strains is perhaps less intuitive. The reasoning lies in
the Poisson effect: when the fiber composite is subjected to in-plane hydrostatic loads,
tensile strains are set up in the fiber direction (due to the Poisson effect), which must be
continuous across the phases, thus providing the required stiffening effect in the transverse
direction (because the linear phase controls the strains along the fibers).

The coupling between the two dilatational modes is illustrated by the two curves for
the proportional loading path un/up = 3.5. We observe that the two curves have the same
behaviors as the corresponding curves for the reference linear composite (short-dash lines),
until phase I yields. After yielding, however, the in-plane hydrostatic strain decreases for
both types of estimates. The reasons for this have already been discussed in the context of
Fig. 5. The curves for the proportional loading path in/Un = I show relatively weak coupling
betweerl the in-plane hydrostatic stress and the longitudinal shear stress in- These curves
resemble the corresponding curves for in/Un = I in Fig. 5.

Finally, we make a comparison between our theoretical results and the experimental
data of Adams (1970). For definiteness, we consider a Cartesian coordinate frame, where
the X3 axis is aligned with the fiber direction n, and the other two axes lie in the transverse
plane (see Fig. I). We make use of the results of Appendix A to determine the values of
the four transversely isotropic stress (strain) invariants in terms ofthe Cartesian components
for a given stress (strain) tensor. In this case, the applied load U22 is a tensile stress in the
transverse direction, and we have up = !U22' ip=~U22' Therefore, by means of the chain
rule, the corresponding tensile strain component is

Figure 7 shows plots of the transverse tensile stress U22 versus the plastic part of the

lower bound prediction

o

o

upper estimate prediction
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Fig. 7. Lower and upper estimates (continuous curves) for the relations between the uniaxial tensile
stress ij 22 and the uniaxial plastic tensile strain ~2 for the nonlinear fiber composite, and results for
three sets of experimental data points (squares, triangles and circles), corresponding to three tests

carried out on an aluminum-matrix composite reinforced with boron fibers (Adams, 1970).
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corresponding tensile strain ~2' Three sets ofexperimental data points are shown (squares,
triangles and circles), representing the three different tests carried out on the aluminum
matrix composite (Adams, 1970). Two curves representing the corresponding two estimates
obtained from the lower bound and the upper estimate for the effective energy function are
also shown. We observe that the two curves bound the experimental data points from above
and below. However, the curve obtained from the upper energy estimate is much closer to
the experimental data points. This is in agreement with our prior discussions suggesting
that the stress-strain relations derived from the upper energy estimate can be used as
estimates for the behavior of two-phase fiber composites with the ductile phase playing the
role of the matrix and the brittle phase that of the fibers.

8. CONCLUDING REMARKS

In this work, we have obtained bounds and estimates for the effective behavior of
nonlinear fiber-reinforced composites by means of a variational procedure introduced by
Ponte Castaneda (1991a, 1992). This procedure enabled the extension of lower and upper
bounds of the Hashin-Shtrikman (1962) type for the effective energy functions of n-phase
linear fiber-reinforced composites to corresponding lower bounds and upper estimates
(estimates for the upper bound) for the effective energy functions ofn-phase nonlinear fiber
composites. Simple representations for these bounds and estimates, generalizing earlier
results by Ponte Castaneda (1992) for the class of incompressible fiber composites, were
obtained for the class of compressible fiber composites. We note that different, but equival
ent, expressions for the lower bound for the effective energy functions of incompressible
fiber composites have also been obtained previously by Talbot and Willis (1991), using a
different procedure. However, the form ofthe lower bounds obtained in this work is simpler.
Additionally, the more practically useful upper estimates of the Hashin-Shtrikman type are
also new. In particular, these upper estimates have not been available by the Talbot-Willis
method.

The important case of compressible, two-phase fiber composites made up of a ductile
and a brittle phase was studied in detail. The general expression for the lower bound was
specialized for this class of composites, and a similar expression, based on neglecting terms
of order (J.lbl) /Kbl)2, was obtained for the upper estimate. Corresponding estimates for the
effective stress-strain relations were obtained by straightforward differentiation of these
expressions. Explicit calculations were carried out for an aluminum-boron system, high
lighting the significant couplings that may arise between the different loading modes.

Finally, we proposed alternative (approximate) interpretations for the constitutive
relations derived from the lower bounds and upper estimates for the effective energy
functions of two-phase, nonlinear fiber composites. Thus, the results based on the lower
bounds were given the interpretation of estimates for the effective behavior of fiber com
posites made up of stiffer linear-elastic matrices weakened by ductile fibers. Corres
pondingly, the results based on the upper estimates for the effective energy functions were
given the interpretation of estimates for the effective behavior of fiber composites made up
of ductile matrices reinforced by stiffer linear-elastic fibers. This latter interpretation was
confirmed through comparison with available experimental results for a metal-matrix, fiber
reinforced composite.
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APPENDIX A: ON THE CHARACTERIZATION OF TRANSVERSELY ISOTROPIC
MATERIALS
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The purpose of this appendix is to gather some results relevant to the analysis of materials with transversely
isotropic symmetry. These results are used extensively throughout the body of the paper in the development of
estimates for the effective behavior of nonlinear fiber composites, which constitute a special class of transversely
isotropic materials. The emphasis of this section is on representations for the transversely isotropic invariants of
the stress and strain tensors. The reason is that nonlinear transversely isotropic materials are most efficiently
characterized in terms of energy-density functions depending on these invariants.

A. I. Isotropic invariants
As is well-known, there are three isotropic invariants for a symmetric, second-order tensor. However, only

two of these, which are of quadratic order or less, are relevant to linear-elastic behavior. These invariants may be
expressed [see, for example, Walpole (1981)] in terms of two fourth-order projection tensors J and K, such that
I = J +K, J = JJ, K = KK and JK = O. Their Cartesian components are given by

(AI)

where {Jij is the Kronecker delta symbol. Then, in terms of these projection tensors, we define two isotropic
invariants of the stress tensor via

(A2)

called the hydrostatic (mean) stress, and the effective shear stress, respectively. We also define the hydrostatic
strain em, and the effective shear strain Yo by relations analogous to (A2).

It is important to note that the elasticity tensor L of an isotropic, linear-elastic material admits a spectral
decomposition

(A3)

where J and K play the role of the eigenprojections, and the bulk and shear moduli of the material, K and Jl, are
the corresponding eigenvalues.

A.2. Transversely isotropic invariants
There are in general five transversely isotropic invariants ofa symmetric, second-order tensor (Spencer, 1971).

However, only four of these invariants are linear, or quadratic, in order. They may be represented in terms of the
four projection tensors (Walpole, 1981) Ell], E 121, EI 31and E 14), satisfying the relations E!P]E!P) = E!P]; ElP)E(q] = 0,
p "# q; and EP]+E[2)+E13)+E(4) = I. The Cartesian components of these four projection tensors are given by:

Elj~' = !{Jij {JkI,

EiJ21 = (J.,/1.kl,

EIJ2, = !({J'k{Jj/+ {Jjk {Jr (Jij{Jk'),

Eij~' = !(fJ",(J.jl+ {J,,(J.jk + {Jjt(J.", +(Jjk(J.,,), (M)

where (J.ij = n,nj and {J'j = {Jij-n,nj, with n denoting the axis of transverse isotropy. Then, the four transversely
isotropic invariants of the stress tensor a may be expressed in the forms:

Up = ~EJiVIO'k( = !Uij{Jij,

Un = EJl,},(hl = (JijfXi.b

,~ = !a,jE1J2takt = Hatj akl{Jik{JIj-!(a,j{Jij)2],

,;; = !aijElj~tak' = [aijak,(J.jk-(alj(J.,)2],

B(a ll +(22)}'

{a 33 },

{ai2 +Hall -(22)2},

{(ar3+a~3)}' (AS)

Physically, these invariants correspond to the in-plane hydrostatic stress, the normal tensile stress, the (in-plane)
transverse shear stress, and the (anti-plane) longitudinal shear stress (given in parentheses are the corresponding
representations for a choice of D aligned with the 3-direction). Analogous relations apply for the transversely
isotropic invariants of the strain tensor e, denoted respectively by Ep, en, Yp and Yn' We also note for latter reference
that the following relations hold between the transversely isotropic invariants of (AS) and the isotropic invariants
of (A2),

(A6)

Contrary to the situation for isotropic materials, the above four projection tensors are not the eigentensors
of the spectral decomposition of an arbitrary transversely isotropic elasticity tensor (Mehrabadi and Cowin,
1990). Such eigentensors would involve the material moduli. Therefore, it is necessary to introduce (Walpole,
1981) two other tensors, that are not projections, EI5) and EI6J, with components

(A7)

The elasticity tensor L of an arbitrary transversely isotropic material may be expressed in terms of these six
tensors, via

$AS 30:14-0



1888 G. DEBoTION and P. PONTE CASTANEDA

L = aiEI I ] +azE12J+a3EI3J+a4EI4] +a s(E[5] +EI6J), (A8)

where aq (q = I, ... ,5) are the five moduli that suffice to characterize the behavior of the material. The compliance
tensor M, ofan arbitrary transversely isotropic material may be expressed in a similar form. It is worth mentioning
that the isotropic projection J, can be represented in the form

and that we can additionally define, for later reference, the tensor E' such that

E' = Ell] + EI41- K.

(A9)

(AIO)

The tensor E' is a projection tensor, orthogonal to Ell] and E14]
Finally, we remark that the energy density function of a transversely isotropic, linear-elastic material may be

represented in the form

U(O') = !/t(up , u". Tp • T,,).

Then, the relations between the transversely isotropic stress and strain invariants are given by

(All)

I ii!/t
y = -- -- and )In
r 2 OTr

(AI2)

A.3. Incompressible, transversely isotropic invariants
For incompressible, transversely isotropic materials, it suffices to consider the three invariants of quadratic

order or less, on the space of traceless, symmetric, second-order tensors. These may be obtained in terms of the
three orthogonal projection tensors EI3!, EI4J and E', defined in the previous subsection. Thus, the incompressible,
transversely isotropic invariants of the stress tensor 0' are Tp , Tn, and the deviatoric (axisymmetric) shear stress

(AB)

corresponding to the three above projections, respectively. We note that from (A6h we have the following identity
relating the effective shear stress and the incompressible, transversely isotropic invariants, T; = T~ +T; +TJ. The
corresponding strain invariants are denoted 1'r' 1'n and Yd'

Finally, we note that the elasticity tensor L ofan incompressible, transversely isotropic, linear-elastic material
admits a spectral decomposition of the form

(AI4)

where J1.p , J1.n' J1.d are the three shear moduli characterizing the behavior of such a material (Lipton, 1992).

APPENDIX B: ESTIMATES FOR THE EFFECTIVE STRESS-STRAIN RELATIONS

In this appendix, we demonstrate the process of obtaining estimates for the effective stress~strain relations
of nonlinear fiber composites from corresponding expressions for bounds and estimates for the effective energy
functions, which are given in the body of the paper. We begin by considering expression (21) for the lower bound
for the effective energy function. Since all the phases in the composite are assumed to be isotropic, the functions
VI') in expression (21) may be written in the form

(BI)

Assuming sufficient smoothness for the functions !/tV), the corresponding optimization conditions can be expressed
in terms of the following 2n implicit equations for the variables T~,j and u~),

(B2)

and we denote by f:o)(J1.~), K~) and 8~J(Il~),K\;J) the solutions for these equations. Then, substitution of the
solutions for vI,j into (21), leads to

where

UIHs-)(a) = max {F(a;Il~),K~)},

~~'."~';. 0

(B3)

(B4)

Once again, the optimization conditions for the above problem can be stated in terms of 2n equations for the
variables J1.~j and K~), namely,
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(B5)
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of(a; Jl~), K~» of(a; Jl~l, K~»
OJl~) = 0 and OK~) = o.

We denote the optimal values of the variables Jl~) and K~), satisfying (B5), by ii~)(a) and K~)(a), respectively. In
terms of these optimal values, the lower bound for the effective energy function may be expressed in the form

(B6)

and the corresponding estimate for the stress-strain relations is given by

O{j(HH(ti)
6ij=~~----'---'

oUi}

_ -(HS-) '(,) ,(,) _ "oF(ti;ii~),K~» oii~)(ti) "oF(a;p~),K~» OK~)(ti)
- [M 0 (Jlo , Ko )luklUkl +'~I OJl~1 oUi} +'~I OK~) oUi}' (B7)

However, due to the optimization conditions (B5), the last two sums in (B7) vanish, and the estimate (22) for the
effective stress-strain relations is obtained. Analogous expressions for the upper estimate, effective stress-strain
relations may be obtained similarly.

Next, we consider the estimate for effective stress-strain relations (32), obtained from the lower bound for
the effective energy function of the incompressible fiber composite (30). For simplicity, we assume that the nth
branch attains the minimum in (30) (e.g. s = n), and additionally we define i 2= i~ +i~. Then, the optimization
constraints (n = I and ii = I may be eliminated by letting

(B8)

In terms of the 2(n -I) optimization variables w('), It) (r = I, ... ,n -I), expression (30) may be rewritten in the
form

(j(HS-)(ti) = min
w(rl. ,,(r)

r=I •...•n-I

(B9)

where the variables ,;') (r = I, ... , n - I) are given by relation (31) I' and

It follows that the 2(n -I) optimization conditions in (B9) are given by the relations

and

(BIO)

(BII)

Ifwe now denote the optimal values ofwi') and '1('), satisfying (BII), by £0(') and ~(,), respectively, the lower bound
for the effective energy function may be written in the form

"-I

(j(HS-I(ti) = L c(')IjJ(')(i;'»+c(")IjJ(")(i~"»,

r= 1
(BI2)

wheref~) = Ji2(w('» 2+iJ(~('»2 (r = I, ... ,n-I) and i;") = ,;")(£0(') ,~(,» [as given by (BIO)]. The corresponding
estimate for the efective stress-strain relation of the incompressible fiber composite then becomes

(BI3)
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We note that each of the terms in the last two sums in (BI3) is identical to zero by virtue of the optimization
conditions (B II). Thus, in the computation of the effective stress-strain relations, we may regard the optimization
variables as constants (as far as derivatives with respect to if are concerned). The final result is given by relation
(32), where wIn) and ~(n) are defined via relations (B8) in terms of the w V) and ~(,) (r = I, ... , n - I), respectively.

The corresponding expressions for the upper estimates for the effective stress-strain relations of the incom
pressible fiber composite are computed similarly. It can also be shown that analogous results may be obtained for
the compressible nonlinear fiber composites.

APPENDIX C: A USEFUL IDENTITY

In many applications, expressions for the effective elasticity tensors of linear-elastic composites involve the
evaluation of a fourth-order tensor M, defined by

(CI)

n

where Ml') are positive definite, satisfying the conditions MliL = MYL = Mi;lk = M};?,j' and where I cl
') = I with

r= I

0,;;; cl') ,;;; I [see, for example, Hill (1965) and Walpole (1969)]. Forlater reference, we note that all the symmetries
of the tensors MV) are carried over to the tensor M.

The aim of this appendix is to demonstrate the following identity, which is used repeatedly in the body of
the paper:

(C2)

for all seco~d-order symmetric tensors tr, where the variables QVI (r = I, ... , n), are subject to the optimization

constraint I c('IQ(') = I, and satisfy the symmetry conditions Q"k' = Q,ik' = Qijlk' This identity is a generalization
r= I

of an analogous identity, first presented in deBotton and Ponte Castaneda (1992).
We begin by letting G(Q('» be the function defined by

"
G,j.~Jn(r)) = L c(r)Q~l;Mk:~qQ~J'\'f'

r= 1

(C3)

where the variables Q(') are subject to the constraint n = I, and where the tensors Ml') and the constants C
VI are

as given above. The choice of the set

(C4)

satisfies both the optimizatIOn constraints and the symmetry conditions stated}n (C2), and is such that
(I(QI'» = M. We consider next a second, arbitrary set, distlllct from the first set, Q(') (r = I, ... , n), such that
n(') = I, and we let @(,) = n(') -Q(') # O. Then, substitution of this second set into (C3) leads to

G",,(nV» = I c("(QJ:i~i+el:l,)MJ:i~,,(Q~j,,+e~j,,)
I"'-C'!

/I II

= L (jr)nki:',Mi:t;,qQ~d.H + L c(r)E>t~jM~~(l~)~::'H'
r"_ 1 r,~ I

(C5)

where we have used the fact that e = O. In addition, since the tensors MV) are positive definite, it follows that for
all nonzero, second order, symmetric tensors tr,

(C6)

The identity (C2) then follows from (C5) and (C6), because

«('71

for all possible n(') # Q(') satisfying the optimization constraint and the symmetry conditions, and nonzero,
second order, symmetric tensors tr. . .

Finally, we note that this identity can be further generalized to the case of a tensor M with arbitrary
dependence on the position vector x. In this case the summations in (CI) and (C2) ~~e replaced .by Illtegrattons
over the volume Q. The optimization variables Q = Q(x) satisfy the symmetry conditions stated III (e2) and the
optimization constraint So Q(x) dx = I.


